Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor

Identifieur interne : 005E39 ( Main/Repository ); précédent : 005E38; suivant : 005E40

Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor

Auteurs : RBID : Pascal:08-0260994

Descripteurs français

English descriptors

Abstract

"Nano-Macro" and "Nano-Micro" integrated sensor-devices have been fabricated via sol-gel dip-coating the nanocrystalline indium oxide (In2O3)-doped tin oxide (SnO2) thin films on the Pyrex glass and the microelectromechanical system (MEMS) substrates. The electrode-spacing for the "Nano-Macro" integrated sensor-device is maintained at 1 cm while that for the "Nano-Micro" integrated sensor-device is reduced to 10 and 20 μm. These sensor-devices with different electrode-spacing are characterized using glancing-angle X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), and high-resolution transmission electron microscope (HRTEM); and subsequently utilized for sensing 900 ppm hydrogen (H2) at room temperature under the dynamic test-condition. The "Nano-Macro" and "Nano-Micro" integrated sensor-devices exhibit maximum room temperature H2 sensitivity of 103 and > 104 with the response time of 3h and 250-350s (for the room temperature H2 sensitivity of 102), respectively. Moreover, the "Nano-Micro" integrated sensor-device with the smaller electrode-spacing (10 μm) shows better response kinetics relative to that of the sensor-device with the larger electrode-spacing (20 μm). The observed sensor-behavior has been explained based on the effect of electrode-spacing on the kinetics of the H2 sensing mechanism.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0260994

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor</title>
<author>
<name sortKey="Shukla, Satyajit" uniqKey="Shukla S">Satyajit Shukla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials & Minerals Division (MMD), National Institute of Interdisciplinary Science and Technology (NIIST) Council of Scientific and Industrial Research (CSIR), Industrial Estate P.O., Pappanamcode</s1>
<s2>Trivandrum 695019, Kerala</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Trivandrum 695019, Kerala</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Advanced Materials Processing and Analysis Center (AMPAC), Mechanical Materials Aerospace Engineering (MMAE) Department Engineering # 381, 4000 Central Florida Blvd. University of Central Florida (UCF)</s1>
<s2>Orlando, FL 32826</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32826</wicri:noRegion>
</affiliation>
</author>
<author>
<name>PENG ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Advanced Materials Processing and Analysis Center (AMPAC), Mechanical Materials Aerospace Engineering (MMAE) Department Engineering # 381, 4000 Central Florida Blvd. University of Central Florida (UCF)</s1>
<s2>Orlando, FL 32826</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32826</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cho, Hyoung J" uniqKey="Cho H">Hyoung J. Cho</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Advanced Materials Processing and Analysis Center (AMPAC), Mechanical Materials Aerospace Engineering (MMAE) Department Engineering # 381, 4000 Central Florida Blvd. University of Central Florida (UCF)</s1>
<s2>Orlando, FL 32826</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32826</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ludwig, Lawrence" uniqKey="Ludwig L">Lawrence Ludwig</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Kennedy Space Center (KSC), National Aeronautics and Space Administration (NASA)</s1>
<s2>FL 32899</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seal, Sudipta" uniqKey="Seal S">Sudipta Seal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Advanced Materials Processing and Analysis Center (AMPAC), Mechanical Materials Aerospace Engineering (MMAE) Department Engineering # 381, 4000 Central Florida Blvd. University of Central Florida (UCF)</s1>
<s2>Orlando, FL 32826</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32826</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0260994</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0260994 INIST</idno>
<idno type="RBID">Pascal:08-0260994</idno>
<idno type="wicri:Area/Main/Corpus">006A67</idno>
<idno type="wicri:Area/Main/Repository">005E39</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0360-3199</idno>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<title level="j" type="main">International journal of hydrogen energy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Hydrogen</term>
<term>Indium oxide</term>
<term>Measurement sensor</term>
<term>Microelectromechanical device</term>
<term>Photoelectron spectrometry</term>
<term>Protective coatings</term>
<term>Sol gel process</term>
<term>Tin oxide</term>
<term>X ray diffractometry</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hydrogène</term>
<term>Oxyde d'étain</term>
<term>Procédé sol gel</term>
<term>Revêtement protecteur</term>
<term>Oxyde d'indium</term>
<term>Diffractométrie RX</term>
<term>Spectrométrie photoélectron</term>
<term>Dispositif microélectromécanique</term>
<term>Capteur mesure</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">"Nano-Macro" and "Nano-Micro" integrated sensor-devices have been fabricated via sol-gel dip-coating the nanocrystalline indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
)-doped tin oxide (SnO
<sub>2</sub>
) thin films on the Pyrex glass and the microelectromechanical system (MEMS) substrates. The electrode-spacing for the "Nano-Macro" integrated sensor-device is maintained at 1 cm while that for the "Nano-Micro" integrated sensor-device is reduced to 10 and 20 μm. These sensor-devices with different electrode-spacing are characterized using glancing-angle X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), and high-resolution transmission electron microscope (HRTEM); and subsequently utilized for sensing 900 ppm hydrogen (H
<sub>2</sub>
) at room temperature under the dynamic test-condition. The "Nano-Macro" and "Nano-Micro" integrated sensor-devices exhibit maximum room temperature H
<sub>2</sub>
sensitivity of 10
<sup>3</sup>
and > 10
<sup>4</sup>
with the response time of 3h and 250-350s (for the room temperature H
<sub>2</sub>
sensitivity of 10
<sup>2</sup>
), respectively. Moreover, the "Nano-Micro" integrated sensor-device with the smaller electrode-spacing (10 μm) shows better response kinetics relative to that of the sensor-device with the larger electrode-spacing (20 μm). The observed sensor-behavior has been explained based on the effect of electrode-spacing on the kinetics of the H
<sub>2</sub>
sensing mechanism.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0360-3199</s0>
</fA01>
<fA02 i1="01">
<s0>IJHEDX</s0>
</fA02>
<fA03 i2="1">
<s0>Int. j. hydrogen energy</s0>
</fA03>
<fA05>
<s2>33</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHUKLA (Satyajit)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PENG ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHO (Hyoung J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LUDWIG (Lawrence)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SEAL (Sudipta)</s1>
</fA11>
<fA14 i1="01">
<s1>Materials & Minerals Division (MMD), National Institute of Interdisciplinary Science and Technology (NIIST) Council of Scientific and Industrial Research (CSIR), Industrial Estate P.O., Pappanamcode</s1>
<s2>Trivandrum 695019, Kerala</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Advanced Materials Processing and Analysis Center (AMPAC), Mechanical Materials Aerospace Engineering (MMAE) Department Engineering # 381, 4000 Central Florida Blvd. University of Central Florida (UCF)</s1>
<s2>Orlando, FL 32826</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Kennedy Space Center (KSC), National Aeronautics and Space Administration (NASA)</s1>
<s2>FL 32899</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>470-475</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17522</s2>
<s5>354000161916530650</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0260994</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of hydrogen energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>"Nano-Macro" and "Nano-Micro" integrated sensor-devices have been fabricated via sol-gel dip-coating the nanocrystalline indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
)-doped tin oxide (SnO
<sub>2</sub>
) thin films on the Pyrex glass and the microelectromechanical system (MEMS) substrates. The electrode-spacing for the "Nano-Macro" integrated sensor-device is maintained at 1 cm while that for the "Nano-Micro" integrated sensor-device is reduced to 10 and 20 μm. These sensor-devices with different electrode-spacing are characterized using glancing-angle X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), and high-resolution transmission electron microscope (HRTEM); and subsequently utilized for sensing 900 ppm hydrogen (H
<sub>2</sub>
) at room temperature under the dynamic test-condition. The "Nano-Macro" and "Nano-Micro" integrated sensor-devices exhibit maximum room temperature H
<sub>2</sub>
sensitivity of 10
<sup>3</sup>
and > 10
<sup>4</sup>
with the response time of 3h and 250-350s (for the room temperature H
<sub>2</sub>
sensitivity of 10
<sup>2</sup>
), respectively. Moreover, the "Nano-Micro" integrated sensor-device with the smaller electrode-spacing (10 μm) shows better response kinetics relative to that of the sensor-device with the larger electrode-spacing (20 μm). The observed sensor-behavior has been explained based on the effect of electrode-spacing on the kinetics of the H
<sub>2</sub>
sensing mechanism.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06B06B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hidrógeno</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Procédé sol gel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Sol gel process</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Procedimiento sol gel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Revêtement protecteur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Protective coatings</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Revestimiento protector</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Diffractométrie RX</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>X ray diffractometry</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Difractometría RX</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Spectrométrie photoélectron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photoelectron spectrometry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Espectrometría fotoelectrón</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dispositif microélectromécanique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Microelectromechanical device</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dispositivo microelectromecánico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Capteur mesure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Measurement sensor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Captador medida</s0>
<s5>14</s5>
</fC03>
<fN21>
<s1>168</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005E39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 005E39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0260994
   |texte=   Significance of electrode-spacing in hydrogen detection for tin oxide-based MEMS sensor
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024